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This paper deals with the free vibration characteristics of isotropic and laminated
orthotropic spherical caps. A first order shear deformable semi-analytical shell finite
element has been used to obtain axisymmetric and asymmetric modes of vibration. Two
geometric configurations, namely deep and shallow shells, have been considered in the
analysis. Both thick and thin ranges of thickness ratio are studied. The effects of thickness
ratio, shallowness, material orthotropy and lay-up have been studied. An attempt has been
made to explain some of the vibrational characteristics by observing the energies in various
modes of vibration.
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1. INTRODUCTION

Shell structures are widely encountered in many engineering applications. The most
commonly encountered types of shell structures are shells of revolution. With the advent
of fibre reinforced composite materials, these structures are being made of composites,
especially so in the aero-space industry. A great number of works can be found dealing
with the analysis of laminated shells of revolution. Though the free vibration of circular
cylindrical and conical shells has been given considerable attention in the literature, the
analysis of shells of revolution with curved meridian such as spherical shells or
paraboloidal shells are not dealt with extensively. Spherical shells are widely encountered
in many structural applications. Spherical pressure vessels are a common phenomenon in
the chemical and process industries. Cylindrical and conical pressure vessels with
hemispherical or torispherical ends are also found in common practice. The use of
composite materials for this type of structure is gaining popularity nowadays. Mirza [1]
has reviewed the literature on vibration of layered shells. From this study, it can be seen
that, though considerable attention has been given to the study of free vibration of
cylindrical and conical shells, the amount of work on laminated spherical shell vibration
is limited. Most of the studies available on the spherical shells are limited to isotropic shells.
Hence the present study has been concerned with the free vibration characteristics of
isotropic and laminated spherical caps.

Considerable attention has been given in the past to the free vibration of thin isotropic
spherical shells. Naghdi [2] has derived equations for axisymmetric deformation of a thin
isotropic shell of revolution including the effects of transverse shear deformation. Johnson
and Reissner [3] have analyzed the transverse vibration of shallow spherical shells for
asymmetric modes. They observed that there is an essential difference between the first
meridional mode and higher modes for the case of two nodal diameters. For higher
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circumferential modes, transfer of energy takes place from bending to stretching as the
curvature of the shell changes from the case of a flat plate to a higher value. Naghdi and
Kalnins [4] have investigated axisymmetric and asymmetric vibration of thin elastic
spherical shells. De Souza and Croll [5] have investigated the free vibration of isotropic
spherical caps using the classical shell theory. They have studied the behaviour of shallow
and deep spherical caps by observing the distribution of energy in various modes of
vibration. Approximate solutions for the natural frequencies and mode shapes for the
axisymmetric vibration of spherical domes have been given by Kunieda [6]. Singh and
Mirza [7] have presented extensive results on the free vibration of spherical caps in
asymmetric modes. A finite element including the effects of transverse shear deformation
and rotary inertia was used in the study.

In contrast to the case of isotopic spherical shells, the literature available on the
vibration of laminated spherical shells is limited. Rath and Das [8] have analyzed the
axisymmetric vibration of closed layered spherical shells including the effects of transverse
shear and rotational inertia. They obtained frequencies corresponding to torsional and
axixymmetric flexural motions. Chao et al. [9] have studied the axisymmetric free fibration
of moderately thick polar–orthotropic hemispherical shells under different boundary
conditions such as sliding, guided-pin, clamped and hinged edges. They have studied the
effects of thickness, fibre direction and orthotropy on the free vibration of hemispherical
shells. Similar studies on the asymmetric vibration of layered spherical shells are not found
in the literature. As the understanding of the free vibrational behaviour is necessary for
achieving better designs, a comprehensive study on the vibration of single layered and
multilayered composite spherical caps has been carried out and is reported in this paper.

2. THEORY AND FORMULATION

2.1.   

The geometry of the shell considered is a surface of revolution with an arbitrarily curved
meridian. The notation for the co-ordinates is shown in Figure 1. The distance of any point
from the axis of revolution is r and 8 is the angle between the normal to the shell surface
and the axis of revolution. The co-ordinate measured along the meridian is s. The distance
of any point from the shell mid-surface along the normal is z. The co-ordinate along the
circumferential direction is u. The displacement of any point in the s, u and z directions
are U, V and W respectively and the corresponding reference surface displacements are
u, v and w respectively. The rotations of the normal in meridional and circumferential
directions are represented by a and b. R8 and Ru are the radii of curvature in the meridional
and circumferential directions. For an axisymmetric surface Ru , r and 8 are related as
follows:

Ru = r/sin 8, 1r/18= r cos 8. (1)

For a spherical surface, R8 and Ru are constant and equal to the radius of the shell R.
The total thickness of the shell is represented by h.

In the first order shear deformation theory an independent rotation of the normal is
allowed to accommodate transverse shear. The displacements at a point z away from the
shell mid surface are expressed in terms of mid-surface displacements and rotations as

U(s, u, z, t)= u(s, u, t)+ za(s, u, t), V(s, u, z, t)= v(s, u, t)+ zb(s, u, t),

W(s, u, z, t)=w(s, u, t). (2–4)
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The displacements u, v, w, a and b can be described by Fourier series expansions in the
circumferential direction as

u(s, u, t)= s
a

n=0

uN(s, t) cos (Nu), v(s, u, t)= v0(s, t)+ s
a

n=1

vN(s, t) sin (Nu),

w(s, u, t)= s
a

n=0

WN(s, t) cos (Nu), a(s, u, t)= s
a

n=0

aN(s, t) cos (Nu),

b(s, u, t)= b0(s, t)+ s
a

n=1

bN(s, t) sin (Nu). (5)

By substituting these expansions in the strain-displacement relations, the strain-
displacement relations corresponding to the Nth harmonic can be obtained. They are given
by
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Figure 1. Notation of co-ordinates and displacements.
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gN
sz =6−uN

R8

+
1wN

1s
+ aN7, gN

uz =6−vN

Ru

−
NwN

r
+ bN7. (9, 10)

A three noded finite element can be developed by using these strain-displacement relations.
Standard isoparametric shape functions are used for the formulation of element matrices.
The shape functions are

N1 = (j2 − j)/2, N2 =1− j2, N3 = (j2 + j)/2. (11)

By using these expressions, the stiffness and mass matrices can be expressed as

[KN]e =CNp* gs gz

[BN]T[D][BN]r ds dz, [MN]e =CNp* gs gz

[N ]T[N ]rr ds dz (12, 13)

The constitutive matrix [D] is given by

[D]= &Q�00 0
kG13

0

0
0

kG23', (14)

where [Q�] is the standard plane stress constitutive matrix and G13 and G23 are the transverse
shear moduli. k is a shear correction factor. In the present study k is taken as 5/6. The
[D] matrix varies across the thickness for a laminated shell.

2.2.   

The governing equation of free vibration for the Nth circumferential mode is

[[KN]− (vN)2[MN]]{U}={0}, (15)

where [KN] and [MN] are global stiffness and mass matrices corresponding to the
circumferential mode number N. By solving equation (15) the free vibration frequencies
vN can be obtained. In the present analysis the frequencies are evaluated by using the
simultaneous iteration technique.

2.3.   

Evaluation of potential energy provides insight towards understanding the vibrational
behaviour and identification of the modes of vibration. The shell possesses a finite energy
during the vibratory motion due to an applied load. In the case of free vibration, the
displacements of the shell obtained for different modes are only the relative amplitudes.
Hence the evaluation of energy with these amplitudes gives an indication of the energy
distribution between various modes and not the exact values. The energy can be primarily
divided into three parts consisting of membrane, bending and transverse shear energies.
The energies in membrane and bending are obtained by separating the in-plane strains due
to extension and bending and evaluating the relative energy. Similarly transverse shear
energy, hereafter referred to as shear energy, is obtained from the terms corresponding to
the transverse shear. The ratios of membrane, bending and shear energies to the total
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energy (U�) are denoted by UM , UB and US respectively. Further, the energy ratios of the
five strains are defined as:

Us =g 1
2ssos dV/U�, Uu =g 1

2suou dV/U�, Usu =g 1
2ssuosu dV/U�,

Usz =g 1
2sszosz dV/U�, Uuz =g 1

2suzouz dV/U�. (16)

3. RESULTS AND DISCUSSION

Free vibration characteristics of spherical caps with various geometric and material
parameters are investigated in this section. First, a study of isotropic spherical caps has
been carried out. Energy contributions from different modes have been evaluated for
carrying out such a study. Subsequently, the free vibration characteristics of single layered
composite spherical caps have been studied. Later, studies on lay-up, shallowness and
orthotropy are presented.

In the following discussion a deep shell refers toa a hemispherical shell (S/a=1) and
a shallow shell refers to a shell with S/a=0·1, where S is the height of the apex above
the base and a is the base radius as shown in Figure 2. These two configurations are chosen
such that the two near extreme cases of curvature effects are covered. The half-angle
subtended by the shell at the centre of the arc f is 90° for the shell with S/a=1 and for
the shell with S/a=0·1 it is 11·42°.

In the present study, mild steel is considered for the example of an isotropic shell. Its
properties are given by E=2·1×107 N/cm2 and n=0·3. The properties of the composite
material considered are as follows: material, graphite/epoxy [10], EL =13·8×106 N/cm2,
ET =1·06×106 N/cm2, GLT =0·6×106 N/cm2, GTT =0·39×102 N/cm2, nLT =0·28,
nTT =0.34, r=1·5 kg/m3.

3.1.   

The FSDT element discussed in section 2 was used for obtaining the frequencies for
axisymmetric and asymmetric modes of vibration. A preliminary convergence study was
carried out for a few typical cases to estimate the number of elements needed for the study.
The frequencies obtained by using the present finite element are validated in this section
by comparisons with reported results.

Figure 2. Configuration of (a) a deep shell and (b) a shallow shell.
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T 1

Comparison of non-dimensional frequencies of an isotropic clamped hemispherical cap with
those of reference [11]; V=vR(r(1− n2)/E)1/2

Mode
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Theory 1 2 3 4

FSDT 0·8050 1·175 1·508 1·838
Ref. [11] 0·809 1·176 1·517 1·854

3.1.1. Problem 1
The axisymmetric frequencies of a clamped isotropic hemispherical shell with h/R=0·1

are compared with the reported results of Tessler and Spirichigliozzi [11]. These values are
shown in Table 1. The frequencies predicted by the present element are in good agreement
with the reported results.

3.1.2. Problem 2
The axisymmetric free vibration frequencies of a three layered cross ply [0/90/0] complete

spherical shell with h/R=0·1 given by Rath and Das [8] are compared with the results
obtained by the present study and are presented in Table 2. The three layers are of equal
thickness. The material properties of the shell are: layers I and III; EL =9×106 lb/in2,
ET =2×106 lb/in2, nLT =0·3, GLT =0·75×106 lb/in2, GTZ =0·7×106 lb/in2, GLZ =0·8 ×
106 lb/in2, r=0·193×10−3 lb s2/in4; layer II, EL =20×106 lb/in2, with all other properties
the same as those of layer I. It can be seen from Table 2 that the frequencies are in good
agreement.

3.1.3. Problem 3
The asymmetric frequencies of a clamped 60° isotropic shell are compared with the

results reported by Singh and Mirza [7] for a shell with h/R=0·05. The frequencies are
tabulated in Table 3 and can be seen to be in good agreement.

3.2.    -

In the present study only clamped spherical caps are considered. The outer edge of the
spherical cap is assumed to be clamped. At the apex, the boundary conditions are given
from the symmetry considerations. The displacement boundary conditions are given
u= v= b=0 at the apex, and u= v=w= a= b=0 at the clamped edge.

T 2

Comparison of non-dimensionl frequencies of orthotropic three-layered complete spherical
shell with those of reference [8]; V=vR(rA /A22)1/2

Mode
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Theory 2 3 4 5

FSDT 0·8034 0·9398 1·048 1·197
Ref. [8] 0·8181 0·9837 1·141 1·355
Classical [8] 0·8204 1·0047 1·203 1·502
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T 3

Comparison of non-dimensional asymmetric frequencies of isotropic clamped 60° cap with
those of reference [7]; V=vR(r(1− n2)/E)1/2

Mode (N, m)
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

Theory 1, 1 1, 2 2, 1 2, 2 4, 1 4, 2

FSDT 0·8529 1·145 1·025 1·397 1·325 1·994
Ref. [7] 0·8576 1·1535 1·0293 1·4076 1·3289 2·0059

The frequencies are non-dimensionalized as

V=vRzr/E, (17)

where v is the frequency in rad/s, r is the density, E is the Young’s modulus, R is the
radius of the shell and V is the non-dimensional frequency. In the case of a laminated
composite shell E is replaced by ET , the modulus in the matrix direction of the
bottom-most lamina: then

V=vRzr/ET . (18)

3.3.  

This section deals with the free vibration characteristics of isotropic spherical caps.
Three thickness ratios of a/h=100, 10 and 5 are considered for the analysis. Both shallow
and deep shells are studied for their vibrational behaviour. First thirteen circumferential
modes are obtained for each case. The frequencies corresponding to the first two
meridional modes and thirteen circumferential modes are presented in tables. To study the
vibrational characteristics and identify the modes of vibration, the energies of membrane,
bending and shear are evaluated and their magnitudes relative to the total energy are
plotted against the circumferential wave number for the first meridional mode. Also, the
energies from the strains in different directions as given in equations (16) are evaluated
and their variation with N is plotted.

3.3.1. Deep shell
Table 4 shows the non-dimensional frequencies corresponding to the first two meridional

(m=1, 2) and thirteen circumferential (N=0, 1, . . . , 12) modes of a clamped deep
isotropic spherical shell for three different thickness ratios. It can be seen that the lowest
frequency occurs at N=1 for all the three thickness values considered here. The mode
of vibration corresponding to N=1 along the axis of symmetry will be similar to that of
a beam in bending. At N=0, the circumference will expand about the axis of revolution.
In the case of a deep shell, the distance between the height of the apex above the clamped
edge is considerable, and hence the beam-like mode is expected to be more flexible. This
will lead to a lower frequency at N=1.

Figure 3 shows the variation with N of energy contributions from membrane, bending
and shear deformations and also the variation of energy from strain in different directions
for the first meridional mode. It can be observed that for deep shells, the lower
circumferential modes have predominant membrane effects. As a higher N is reached, the
influence of bending increases. In the case of thicker shells, the bending energy increases
at a lower value of N (see Figure 3). The value of N at which the bending energy ratio
crosses the membrane energy ratio is higher for thin shells. But beyond a certain N the
fraction of bending energy comes down with an increase in shear energy contribution. It
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T 4

Non-dimensional frequencies of clamped deep isotropic spherical cap for different thickness
ratios

a/h
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

100 10 5
ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV

N 1 2 1 2 1 2

0 0·767 0·956 0·843 1·221 0·944 1·218
1 0·716 0·917 0·785 1·068 0·835 1·285
2 0·900 0·992 0·966 1·301 1·104 1·750
3 0·948 1·020 1·127 1·571 1·427 2·234
4 0·970 1·044 1·315 1·881 1·806 2·734
5 0·986 1·069 1·559 2·234 2·246 3·259
6 1·001 1·106 1·858 2·626 2·734 3·806
7 1·016 1·116 2·206 3·051 3·255 4·369
8 1·033 1·117 2·596 3·505 3·802 4·945
9 1·053 1·143 3·020 3·983 4·366 5·530

10 1·078 1·187 3·474 4·482 4·942 6·124
11 1·109 1·235 3·953 4·999 5·527 6·725
12 1·146 1·268 4·452 5·531 6·118 7·334

can also be seen from Figure 3 that the energy due to circumferential strain (Uu ) is higher
for thin shells at low values of N, i.e., at N=0 and N=1, whereas Us is higher for thicker
shells. However, the influence of Uu increases as N increases. This is due to the increased
bending effects in the circumferential direction arising from the higher circumferential
modes.

It has been observed that Usu has a peak value at N=1 for all the thickness ratios
considered. Usu will be zero for N=0 as the in-plane shear strain corresponding to the
axisymmetric mode will be zero. However, the value of Usu will be non-zero at N=1. As
N increases, the contribution of Usu decreases. This is due to the increase in the stiffness
from the formation of lobes in the circumferential direction as N increases. The lowest
meridional frequency at N=12 for a/h=100 is approximately 1·6 times the lowest
frequency (N=1). The second meridional frequency at N=1 is 1·3 times and the fifth
meridional frequency is 1·6 times the lowest frequency. It is observed that the lowest
meridional frequency at a very high circumferential wave number of N=30 gives a
frequency of 4·4 times the lowest frequency. This relatively small change in frequency can
be attributed to the predominant membrane action governing the vibration. Increase in
the value of N introduces additional bending and shear in the circumferential direction.
However, at lower values of thickness, the additional bending and shear energies will be
small and hence the increase in the net energy is also small. This leads to the frequencies
being closely spaced. This implies that the higher circumferential modes also play a vital
role in the dynamic characteristics of thin deep spherical shells. At a thickness of a/h=10,
the ratio of the lowest meridional frequency corresponding to N=12 to the lowest
frequency is approximately 4·5 which can still play an important role in the transient
dynamic characteristics. As the bending energy varies as the third power of the thickness,
the influence of bending increases at higher values of thickness.

The ratio of lowest frequencies corresponding to a/h=5 and a/h=100 is approximately
1·2. This is a rather small increase for an increase of thickness by 20 times. It is due to
the predominant membrane action present in the shell vibration as can be seen from
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Figure 3. Energy contributions from various terms for deep isotropic shells.

Figure 3. The stiffness as well as the mass in membrane mode are proportional to the
thickness of the shell and hence the membrane frequency is independent of the thickness.
Only at higher circumferential modes, a considerable difference of frequencies at these two
thickness ratios is observed (5·3 at N=12).

The first meridional mode shapes corresponding to various values of N are plotted in
Figure 4. The displacements are normalized to have a peak amplitude of magnitude one.
While studying the mode shapes of the shell, it has to be kept in mind that, unlike in the
case of plates, for shells the transverse normal displacement w cannot be considered to be
representative of bending. A transverse normal displacement, in the case of a curved
surface causes both bending and membrane actions. An extreme case is that of a full
spherical shell loaded by an uniform internal pressure which will have only the transverse
normal displacement at all the points on the surface though the load is supported by only
the membrane action.

It can be seen that the mode shapes corresponding to thick and thin shells are similar
with a noticeable difference only at N=1. It can be noted that N=1 corresponds to the
lowest frequency. Also it can be seen from Figure 3 that at N=1 the energy corresponding
to Us has a minimum. It has been seen earlier that various theories differ considerably at
N=1. It is observed from the mode shapes that the amplitudes corresponding to in-plane
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displacements u and v are small at higher values of N though they have considerable
influence at lower circumferential modes. The decrease in the amplitudes of u and v with
increase in N can be attributed to the increase in bending action with increase in
circumferential mode number. Another feature to be noted from these figures is that the
location of peak amplitude shifts towards the clamped edge with increase in the
circumferential wave number. At these modes, the displacements near the apex remain
almost zero. The strain-displacement relations contain terms corresponding to N/r. As the
apex is approached, r tends to zero and hence the corresponding displacements also have
to tend to zero for a finite strain. This can be seen in Figure 4 where all the displacements
except at N=0 are zero at the apex. As the value of N increases, the zone of influence
of 1/r increases and hence the displacements over a longer meridional length from the apex
tend to be low. The high amplitude near the clamped edge is an indication that, for
increasing the frequencies, increasing the stiffness near the clamped edge will be effective.
This can possibly be achieved through an increase in the thickness at the clamped edge
or by introducing stiffeners in this zone.

Figure 4. Mode shapes for isotropic shells (m=1).
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3.3.2. Shallow shell
The non-dimensional frequencies of a shallow spherical shell of S/a=0·1 for the first

two meridonal modes and thirteen circumferential modes are given in Table 5. The energy
plots are given in Figure 5 and the corresponding mode shapes are given in Figure 4.

It can be seen from the table that the lowest frequency occurs at N=0 for all three
thickness ratios considered. It has been noted earlier that the lowest frequency occurs at
N=1 for deep shells. In the case of shallow shells, the height of the apex over the clamped
edge is very low and hence the resistance for bending in N=1 will be higher. This causes
the lowest frequency to be at N=0. It can be observed from the energy plots that the
shallow shell vibration is predominantly governed by the bending and shear energies. The
contribution of membrane is felt only at lower circumferential modes of thin shells. At
a/h=100 (R/h=505) the contribution of meridional energy is higher than that of bending
energy for NQ 5 only. However, the contribution from the shear is very low at this
thickness. In the case of thick shells, The membrane energy drops rapidly from N=0 to
N=2 and approaches almost zero beyond this value. It can be seen from the
strain-displacement relations that the contribution of w to the membrane strain is
proportional to 1/R. As the shallowness of the shell increases the corresponding radius of
curvature increases and this in turn decreases the contribution of transverse displacement
to the in-plane strain and hence the membrane effects are low.

The contribution of bending increases initially as N increases and beyond some value
of N (e.g., N=2 for a/h=10 and N=1 for a/h=5) the bending energy ratio decreases.
This drop is due to the increase in the contribution of transverse shear energy to the total
energy. At very high circumferential modes, the contribution of shear dominates the other
two. The major contribution to this shear energy comes from the shear in the
circumferential direction. It can be seen from the figure that the energy contribution due
to the strain in the meridional direction is predominant at lower circumferential modes.
However, as N increases, the values of Uu and Uuz increase. The predominant contribution
to the transverse shear energy comes from Uuz .

T 5

Non-dimensional frequencies of clamped shallow isotropic spherical cap for different
thickness ratios

a/h
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

100 10 5
ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV

N 1 2 1 2 1 2

0 1·119 1·473 2·043 5·611 3·103 9·186
1 1·216 1·424 3·342 8·310 5·584 11·53
2 1·179 1·650 4·960 10·95 8·207 16·19
3 1·301 1·977 6·985 13·85 11·16 20·14
4 1·481 2·366 9·224 16·87 14·25 23·83
5 1·721 2·809 11·64 19·98 17·42 27·50
6 2·016 3·301 14·20 23·16 20·66 31·15
7 2·361 3·839 16·88 26·39 23·93 34·79
8 2·753 4·420 19·66 29·67 27·23 38·41
9 3·189 5·044 22·52 32·99 30·55 42·00

10 3·665 5·707 25·46 36·33 33·87 45·57
11 4·181 6·410 28·45 39·70 37·18 49·13
12 4·735 7·151 31·49 43·09 40·50 52·67
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Mode shapes of a shallow shell also follow a pattern similar to that of a deep shell except
at N=1. A feature that can be noticed is that the peak amplitudes in the u and v directions
are much less than those of a deep shell.

The variation of frequency with N is significant in the case of shallow shells even at low
values of thickness ratio. For a/h=100, the ratio of frequencies at N=12 to the lowest
frequency is approximately 4·2 as against 1·6 for the case of a deep shell. The ratio for
a thick shell with a/h=5 is approximately 12·9. This is due to the predominant effect of
bending. Also, the frequency increases considerably with the thickness. The ratio of lowest
frequencies for a/h=5 and a/h=100 is 2·8 as against 1·2 in the case of deep shells. Also,
for a particular N, frequencies vary considerably with the meridional mode.

3.4.    

In the previous section, the free vibrational behaviour of deep and shallow spherical
shells has been discussed. This section deals with the vibrational characteristics of a single
layered composite (graphite epoxy) shell with fibre along the meridian or circumference.
The material properties are as above. Both deep and shallow shells are discussed together.

Figure 5. Energy contributions from various terms for shallow isotropic shells.



12

0.8

U
/U

to
t

10

0.6

0.4

0.2

2 4 6 80

UM

US

UB

a/h = 5

12

1.0

10

0.6

0.4

0.2

2 4 6 80

UM

US

UB

a/h = 5
0.8

0.8

0.6

0.4

0.2

UM

US

UB

a/h = 10
1.0

0.6

0.4

0.2 UM

US

UB

a/h = 10
0.8

0.00.0

1.0

0.6

0.4

0.2

UM

US

UB

a/h = 100
UM

US

UB

a/h = 100

0.0

10.0

6.0

4.0

2.0

a/h = 5

60.0

40.0

20.0

a/h = 5

0.00.0

Ω

0.8

8.0

a/h = 10

a/h = 100

a/h = 10

a/h = 100

ShallowDeep

N N

     29

Figure 6. Variations of frequencies and energy ratios for shells with fibre along the meridian: —, m=1;
–––, m=2.

3.4.1. Meridional fibre orientation
The variation of the first two non-dimensional meridional frequencies with N for both

deep and shallow shells at three a/h ratios of 100, 10 and 5 are plotted in Figure 6. The
variation with N of the contributions from meridional, bending and transverse shear to
the total energy of the shell for the first meridional mode are also shown in Figure 6. As
the fibre is oriented along the meridian, the modulus in the meridional direction is much
higher than the circumferential direction.
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It is observed from the frequency variation that the lowest free vibration frequency
occurs at N=1 for deep shells with thickness ratios a/h=100 and 10. At a/h=5, the
deep shell has its lowest frequency at N=0. It has been observed that in the case of a
deep isotropic shell the lowest frequency occurs at N=1 at all three thickness ratios
considered. As the fibre is in the meridional direction, the stiffness corresponding to N=1,
the beam-like mode, increases while the expansion of the circumferential direction
decreases due to the low modulus. Hence, as the thickness increases, the lowest frequency
shifts from N=1 to N=0. In the case of a shallow shell, the lowest frequency occurs at
N=0 for all three values of thickness considered here. It can be observed from the
frequency variation that the frequencies corresponding to higher thickness ratios increase
steeply with N. This is due to the increased effect of bending and shear.

It can be observed by comparing the energy plots of deep isotropic and meridional fibre
shells that the membrane energy contribution, though the predominant one at lower
circumferential modes even for fibre-reinforced deep shells, is a smaller fraction of the total
energy than that of an isotropic shell. In the case of a shallow shell with meridional fibre,
the energy plots follow a pattern similar to that of an isotropic shell. The variation of
membrane energy is very similar to that of an isotropic shell. The contribution of shear
energy increases significantly for fibre reinforced shells. Even at lower circumferential
modes, the influence is much higher for the composite shell, unlike in the case of an
isotropic shell.

The ratio of the first meridional frequency corresponding to N=12 to the lowest
frequency for a deep shell with a/h=100 is approximately 2·3 and for a/h=10 it is 3·8.
The corresponding values for a shallow shell are 3·04 and 6·04. The ratio of lowest
frequencies corresponding to a/h=5 and 100 are 1·57 and 3·1 for deep and shallow shells
respectively. These values are higher than those for an istropic shell, but still are
significantly low.

3.4.2. Circumferential fibre orientation
In the previous section, the vibrational characteristics of a shell with fibre along the

meridian are discussed. The next configuration considered is that of a shell with fibre
oriented along the circumference (perpendicular to the meridian). Figure 7 shows the
variation of the first two meridional frequencies and the corresponding variation of energy
ratios for the first meridional mode with N.

It is observed from the frequency plots that the lowest frequency occurs at N=1 for
a deep shell and at N=0 for a shallow shell. This behaviour is similar to that observed
in the case of an isotropic shell. It can be seen from the energy variation that the membrane
energy drops more rapidly with the increase in N than that of a shell with meridional fibre.
In the case of deep shells, the membrane action is predominant at lower values of N. Even
at a thickness of a/h=5, the membrane action at N=0 and N=1 is very high. This is
clearly reflected in the frequency variation. The ratio of lowest frequencies for a deep shell
with thickness ratios a/h=5 and 100 is 1·05 while it is 1·57 for a shell with meridional
fibre. The bending energy ratio, except in the case of a thin deep shell, shows an increase
initially and then decreases. As explained earlier, with the increase in the circumferential
mode number the bending action in the circumferential direction increases and this in turn
increases the bending energy. However, as the value of N increases further, the
contribution of shear increases and this causes a fall in the relative magnitude of bending
energy though the absolute value increases. At very high values of N, the shear energy
becomes predominant for thick shells (a/h=10 and 5).

For shallow shells, except for a/h=100, the shear energy becomes predominant at a
considerably low value of N. Even for the axisymmetric mode the shear contribution is
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significant for thick shallow shells. The shear energy is about 10% of the total energy
for a shell with a/h=10 and for a/h=5, it is approximately 30%. The ratio of
lowest frequencies corresponding to shallow shells with a/h=5 and 100 is
approximately 3.

The ratios of the first meridional frequency at N=12 to the lowest frequency for deep
and shallow shells with circumferential fibre are 1·95 and 7·8 for a shell with a/h=100
and 6·9 and 16·8 for a/h=10. The corresponding values for a shell with meridional fibre
are 2·3, 3·0 and 3·8, 7·1. The higher ratios for circumferential fibre shells are expected. As

Figure 7. As Figure 6 but with fibre along the circumference. Key as Figure 6.
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the fibre is in the circumferential direction, the resistance to the deformation in the
circumferential direction will be more and hence the frequencies increase rapidly with N.

3.5.      

In the previous section, the vibration of single layered shells with isotropic or orthotropic
properties has been discussed. The vibrational characteristics may change significantly
when the shell is layered. Hence this section deals with the vibration of layered shells.

In the following discussion, 0° fibre orientation refers to fibre in the meridional direction
and 90° fibre refers to a circumferential fibre. Four types of layered configurations namely
two-layered [0/90], three-layered [0/90/0] and [90/0/90] and eight-layered [0/90/0/90]s
configurations are considered. All layers are assumed to be of equal thickness. For the
convenience of discussion, these configurations are labelled as follows: L1A, single layer,
meridional fibre; L1B, single layer, circumferential fibre; L2, two-layered [0/90]; L3A,
three-layered, [0/90/0]; L3B, three-layered [90/0/90]; L8, eight-layered [0/90/0/90]s . The first
two configurations are single layered with higher modulus in the meridional (L1A) and
circumferential (L1B) directions respectively. The L2 configuration is a two-layered shell
where the effective modulus in both the directions is the same. The L3A shell has a higher
modulus in the meridional direction but the circumferential direction is also stiffened by
fibre in the middle layer. The L3B configuration is similar to L1B with additional
reinforcement in the meridional direction. The eight-layered shell L8 is similar to L2 with
the effective modulus in both directions being the same.

Figure 8 shows the variation of the first meridional frequencies with circumferential
mode number for different lay-up and thickness ratios. The curves are labeled by the
material configuration as discussed above.

The lowest frequencies at different thickness values and lay-up for deep and shallow
shells are given in Tables 6 and 7 respectively. The numbers in the brackets indicate the
circumferential mode number at which the lowest frequency occurs. The last column
indicates the ratio of the highest and lowest frequencies corresponding to a particular
thickness.

It can be observed from the figure and tables that at lower circumferential modes, the
L1B configuration gives the lowest frequency for all lay-ups except for the range of a deep
shell. At higher circumferential modes, the frequencies corresponding to L1B are above
the frequencies of other configurations except L3B. The increase in the frequencies
corresponding to L1B and L3B at higher circumferential wave numbers can be attributed
to the higher modulus in the circumferential direction arising from the fibre in that
direction. Although L1B and L3B give higher frequencies at higher N, the lowest
frequencies of these two are lower than those of other configurations except, as mentioned
earlier, for the thin deep shell. The curves representing L3A and L1A are similar in most
of the cases. In both these configurations, the modulus in meridional direction is higher
as the fibre is predominantly oriented along the meridian.

For thin deep shells, L1B gives higher frequencies than L1A. This can be explained by
examining the energy plots for isotropic shells. For deep shells in the thin range at N=0
and N=1, Us is observed to be less than Uu . Hence, the circumferential fibre gives higher
frequencies over the meridional fibre as additional stiffness is added in the direction that
carries the maximum energy. This can be observed from the frequencies obtained for
orthotropic shells. For example, at a/h=100 the frequencies of a deep shell with
meridional and circumferential fibres are 0·884(1) and 0·976(1) respectively. As the lowest
frequency occurs at N=1 for these shells, it can be said that, in single-layered shells, a
higher frequency can be obtained by circumferential fibre for thin deep shells while the
meridional fibre is preferable for thick deep as well as thick and thin shallow shells.
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Figure 8. Variations of frequencies with N for deep and shallow shells with different lay-ups.

In the case of deep shells, at low thickness values, the two-layered shell gives the highest
frequency. It is observed previously that the circumferential fibre is preferable over the
meridional fibre in case of single-layered shells. However, as the predominant modes of
vibration are extensional with considerable influence of extension in both the directions,
stiffening the shell in both the directions by L2 lay-up gives higher frequencies. As the
thickness increases, the maximum lowest frequency occurs at L3A configuration. This is
due to the increase in energy from the strain in the meridional direction as the thickness
increases. An increase in the frequency of 31% is obtained for a shell with a/h=100 by
choosing a suitable lay-up. The highest increase in the frequency is about 50% at a/h=5
among the cases considered.

For a shallow shell, the highest frequency is observed for the L3A configuration for
lower thickness values and for L2 for higher thickness values. The highest gain in the
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T 6

Lowest frequencies and corresponding circumferential wave numbers of a clamped
hemispherical cap for different lay-ups

a/h 0 90 0/90 0/90/0 90/0/90 [0/90/0/90]s Ratio

100 0·884(1) 0·976(1) 1·157(1) 1·133(1) 1·125(1) 1·142(1) 1·31
50 0·932(1) 0·978(1) 1·183(1) 1·180(1) 1·145(1) 1·181(1) 1·27
20 1·130(1) 0·983(1) 1·237(1) 1·284(1) 1·185(1) 1·260(1) 1·30
14·2 1·253(1) 0·988(1) 1·263(1) 1·340(1) 1·202(1) 1·300(1) 1·36
10 1·386(1) 0·995(1) 1·292(1) 1·404(1) 1·222(1) 1·346(1) 1·41
6·67 1·498(0) 1·009(1) 1·326(1) 1·470(1) 1·247(1) 1·396(1) 1·46
5 1·491(0) 1·002(1) 1·348(1) 1·491(0) 1·268(1) 1·429(1) 1·50

frequency, which is almost double the lowest, is observed at a thickness of a/h=20.
However, the frequencies of the shells with predominantly meridional fibre (L1A, L3A)
and two-layered or eight-layered do not show much difference while for L1B and L3B,
where the circumferential fibre is influential, the frequency is seen to be much lower.

From the above study it can be seen that a significant increase in the lowest natural
frequency can be obtained by choosing a suitable lay-up. The gain is more for a shallow
shell. Finally, the designer has to choose a configuration based on other requirements such
as static stresses and manufacturing considerations.

3.6.   S/a
The dynamic characteristics of a spherical cap change greatly from deep to shallow

ranges. The shell is considered shallow when S/a is low; that is when sin f is small where
f is the subtended angle of the shell. A value of S/a=1 represents a hemispherical cap
which is a deep shell. In this section, the frequencies of a spherical cap are investigated
for their variation from deep to shallow ranges of S/a for two thickness ratios of a/h=10
and 100, representing thick and thin shells. Three material cases, namely isotropic,
composite meridional fibre and circumferential fibre, are considered. The variation of the
first meridional frequencies with N a different values of A/a is shown in Figure 9. It can
be observed from the figure that the increase of shallowness increases the frequency
monotonically for all the cases considered. As the shallowness of the shell increases, the
length of the meridian decreases. This reduces the wave length of the meridional modes.
Moreover, as seen earlier, as the shallowness increases the radius of curvature increases
and this decreases the influence of transverse normal displacement w on the meridional
energy as the inplane strain from w varies as 1/R. With the reduction in the meridional

T 7

Lowest frequencies and corresponding circumferential wave numbers of a clamped shallow
spherical cap for different lay-ups

a/h 0 90 0/90 0/90/0 90/0/90 [0/90/0/90]s Ratio

100 2·127(0) 1·453(0) 2·070(2) 2·374(2) 1·986(2) 2·255(2) 1·63
50 2·907(1) 1·603(0) 2·464(1) 2·855(1) 2·239(1) 2·676(1) 1·78
20 3·721(0) 2·040(1) 3·522(1) 3·908(1) 3·906(1) 3·748(0) 1·92
14·2 4·142(0) 2·369(0) 4·307(1) 4·314(0) 3·528(0) 4·155(0) 1·82
10 4·815(0) 2·886(0) 5·107(0) 4·955(0) 3·954(0) 4·789(0) 1·77
6·67 4·828(0) 3·689(0) 5·978(0) 5·902(0) 4·670(0) 5·711(0) 1·62
5 6·600(0) 4·350(0) 6·623(0) 6·603(0) 5·298(0) 6·387(0) 1·47
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Figure 9. Variations of frequencies with N of thin and thick shells, for different S/a: w, 0·1; q, 0·2;
r, 0·6; ×, 1.

effects, the bending and shear effects become predominant. Also, it can be noted that the
frequency increases sharply with N at shallow ranges. This is also due to the higher
influence of bending and shear. The variation of frequencies with S/a is higher for thicker
shells. The lowest frequencies corresponding to different cases are presented in Table 8.

The ratio of the lowest frequencies corresponding to S/a=0·1 and S/a=1 for an
isotropic shell at a/h=100 is 1·6 and at a/h=10, it is 2·6. The corresponding values for
a meridional fibre shell are 2·4 and 3·5 and those for a circumferential fibre shell are 1·5
and 2·9. From these values it can be seen that the meridional fibre shell has a higher
influence of S/a on the lowest frequency. The ratios corresponding to the isotropic shell
and meridional shell are very close. It has been observed earlier that, at the lowest
frequency, the energy from the strain in the meridional direction contributes
predominantly to the total energy except at thin ranges of deep shell. Hence, it can be said
that the stiffness in the meridional direction will have higher influence on the lowest



. .   . 36

frequencies of the shell which in turn leads to higher influence of shallowness in the case
of meridional fibre shells.

3.7.   

Fibre reinforced composites in general have orthotropic properties with the preferred
directions oriented along the fibre and its perpendicular directions for an uni-directional
fibre reinforced composite. The properties of these materials depend not only on the
properties of individual matrix and fibre but also on the volume fraction of the fibre. Wide
ranging materials with varying properties from a high level of orthotropy to near isotropy
can be found in use. The two basic factors by which the orthortropy can be judged are
the ratio of in-plane moduli (EL /ET ) and the ratio of the transverse shear modulus to that
of the in-plane modulus (GLZ /ET ). Any variation in these ratios effects the final behaviour
of the shell. In this context, here, a study has been carried out to observe the influence
of EL /ET and GLZ /ET . In carrying out such a study, the values of all other material
constants are kept constant, with only EL or GLZ varied. Although in a real situation all
these properties vary when the material constitution is changed, this kind of a study is
expected to give some insight into the effect of orthortropy on the free vibration. The study
is carried out on clamped deep and shallow shells with a/h=100 and 10.

3.7.1. Effect of EL /ET

The variation of non-dimensional frequencies corresponding to the first meridional
modes of the first six circumferential modes (N=0 to 5) with EL /ET for three material
configurations, namely single-layered meridional fibre, single-layered circumferential fibre
and eight-layered [0/90/90/0]s symmetric lamination, is shown in Figure 10. A range of
EL /ET from moderately orthotropic 5 to highly orthotropic 40 is considered for the study.
This is achieved by keeping all other material constants except EL the same as that of
glass/epoxy.

For thin deep shells, the lowest frequency occurs at N=1 for all three material
configurations considered. The frequencies corresponding to N=0 are seen to be above
N=2 and N=3 for both circumferential fibre and eight-layered shells. The variations of
frequencies of both these shells are seen to be similar. In the discussion for thin isotropic
deep shell, it is seen that the energy corresponding to the strain in the circumferential
direction is the predominant contributor to the total energy. Hence, this similarity is

T 8

Lowest frequencies and corresponding circumferential wave numbers of a clamped spherical
cap for different S/a

S/a
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

Material 0·1 0·2 0·4 0·6 0·8 1·0

a/h=100
Isotropic 1·119(0) 1·021(0) 0·962(0) 0·919(0) 0·824(1) 0·713(1)
Glass epoxy (meridional) 2·126(0) 1·532(0) 1·216(1) 1·063(1) 0·965(1) 0·882(0)
Glass epoxy (circumf.) 1·453(0) 1·336(2) 1·189(2) 1·110(2) 1·052(2) 0·971(1)

a/h=10
Isotropic 2·043(0) 1·555(0) 1·294(0) 1·079(1) 0·917(1) 0·782(1)
Glass epoxy (meridional) 4·807(0) 3·612(0) 2·615(1) 2·095(1) 1·681(1) 1·382(1)
Glass epoxy (circumf.) 2·885(0) 1·949(0) 1·530(0) 1·352(0) 1·174(1) 0·990(1)
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Figure 10. Effect of EL /ET for deep and shallow shells. w, N=0; q, N=1; r, N=2; ×, N=3; +, N=4;
&, N=5.

expected. In the case of thick deep shells, the lowest frequency corresponding to the shell
with circumferential fibre occurs at N=1 whereas in the case of meridional fibre and
eight-layered shells, the lowest frequency shifts from N=1 to N=0 as EL increases. As
observed earlier, the N=1 mode corresponds to a beam-like mode. Increasing the
modulus in the meridional direction by increasing EL leads to higher resistance to N=1
and thus the corresponding frequency increases. Hence, beyond a certain value of EL the
frequency corresponding to N=0 will be lower. The frequency corresponding to N=0
is almost unaffected by EL /ET for deep eight-layered shells except for very low range of
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EL /ET for a thin shell. This can be attributed to the predominant membrane effects and
also the near isotropic properties of an eight-layered shell.

The ratios of the lowest frequencies corresponding to EL /ET =40 and EL /ET =5 for thin
deep shells with a/h=100 are 1·08, 1·04 and 1·28 respectively for the meridional fibre,
circumferential fibre and eight-layered shells. The corresponding values for the thicker shell
with a/h=10 are 1·31, 1·04 and 1·34. From these values, it can be said that EL has very
little effect on the shells with circumferential fibre orientation. This is in contrast to a
significant gain observed for eight-layered shells. The increased stiffness in both the
meridional and circumferential directions can be attributed to such a high gain in the
frequencies for eight layered shells. In the case of meridional fibre orientation, the thin shell
is not much influenced by EL but a significant gain is observed for the thicker shell. This
is due to the higher influence of bending in the meridional direction in thick shells.

It can easily be seen from the figures that the EL /ET ratio has a more pronounced effect
on shallow shells than on deep shells. This is as expected. In contrast to deep shells, in
the case of shallow shells, the lowest frequency occurs at N=0 except for thin
eight-layered shells. This phenomenon can be seen in Table 7 also. The frequencies
corresponding to various circumferential modes are well separated in case of thick shallow
shells. This is as expected. The ratios of the lowest frequencies of thin shallow shells
corresponding to the extreme cases of EL /ET considered in this study are 1·87, 1·17 and
1·87 for meridional fibre, circumferential fibre and eight-layered shells respectively, and the
corresponding values for thick shells are 2·1, 1·52 and 2·3. Here also, as in the case of a
deep shell, the circumferential fibre orientation experiences the lowest influence of EL /ET

of the three cases considered, though the gain in the frequency is much higher than for
deep shells. Very high gain in the frequency is observed for both meridional fibre and
eight-layered shells. The gain in the case of thick shells is seen to be close to the square-root
of the ratio of extreme values of EL , i.e., z40/5=2·83.

From this study, it can be said that the use of high orthotropy materials for deep
single-layered shells will not increase the frequencies significantly but a considerable gain
can be obtained for a layered shell within the lower range. In the case of shallow shells,
the frequency can be increased significantly by using a high orthotropy material.

3.7.2. Effect of GLZ /ET

Figure 11 shows the variation of non-dimensional frequencies corresponding to the first
meridional modes of the first six circumferential modes (N=0 to 5) with GLZ /ET for three
material configurations, namely single-layered meridional fibre, single-layered circumferen-
tial fibre and two-layered [0/90] lay-up. A range of GLT /ET from 0·2 to 0·7 is considered.
The material properties considered in this study are as follows: EL /ET =25; EZ /ET =1;
GTZ /ET =0·2; GLZ /ET =GLT /ET =0·2–0·7. Here, GLZ and GLT are assumed to be the same
as this is the case in many real materials. The ratios of the lowest frequencies corresponding
to GLZ /ET =0·7 and 0·2 are 1·32, 1·60 and 1·70 respectively for a thin deep shell of
meridional fibre, circumferential fibre and two layers. The corresponding values for a thick
deep shell are 1·82, 1·56 and 1·74. From these, it can be seen that the shear modulus has
a significant influence on deep shells even in the thin range. Here, unlike in the case of
EL /ET , even the shell with circumferential fibre orientation is greatly influenced. Low shear
modulus of at GLZ /ET =0·2 (GLZ /ET =0·008) leads to very high shear flexibility. Hence,
even though the membrane effects are predominant for deep isotropic shells, the influence
of shear is also felt considerably. The lowest frequency ratios for thin shallow shells are
1·01, 1·18 and 1·24 and for a thick shallow shell they are 1·14, 1·0 and 1·35 respectively
for the three material configurations considered. From this, it can be seen that the influence
of GLZ /ET is low for shallow shells. This in contrast to what is expected. The ratio of 1
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for the circumferential fibre is due to the lowest frequency occurring at the axisymmetric
mode (N=0). For the axisymmetric mode of shallow shells with circumferential fibre, the
frequency is unaffected by GLZ /ET . Here, GLZ is in the u-z plane and as there is no shear
strain in this plane for the axisymmetric mode, this can be expected. In the case of a deep
shell, N=0 curve is almost flat except at very low shear moduli. The variation at low shear
moduli can be attributed to the mode of vibration being torsional. As the shear modulus
increases, the mode of vibration changes to that of flexure–extension and remains flat
thereafter.

Figure 11. As Figure 10 but effect of GLZ /ET.



. .   . 40

4. CONCLUSIONS

In this paper, a study of free vibration characteristics of isotropic and laminated
spherical caps has been carried out by using a first order shear deformable semi-analytical
shell finite element. Clamped spherical caps in deep and shallow ranges and covering thick
and thin ranges are considered in the study. The effects of material orthotropy, fibre angle
and lay-up of laminated shells are studied in detail. From the above study, the following
observations are made.

1. The vibration of a deep shell is primarily governed by the membrane effects whereas
that of a shallow shell is governed by bending and shear.

2. As the circumferential wave number increases, the influence of bending and shear
increases.

3. Deep shells have very close frequencies and the frequency increases very slowly with
circumferential mode number; hence higher circumferential modes play a vital role in the
dynamics of deep shells.

4. A significant gain only in the lowest frequencies can be achieved by choosing a
suitable lamination scheme.

5. In most cases, except for thin deep shells meridional fibre gives a higher fundamental
frequency. For thin deep shells, circumferential fibre is preferable.

6. Although lamination increases the frequencies in many cases, increasing the number
of layers beyond three does not increase the frequency considerably. Hence, an appropriate
two- or three-layered shell is advisable.

7. The effect of curvature is higher in the case of shells with fibre oriented along the
meridian.

8. Using materials with high modulus in the fibre direction does not yield any
considerable increase in the frequencies of deep single layered shells but leads to a
significant increase in the frequencies of shallow shells.

9. For a multilayered shell, the frequencies can be significantly increased by choosing
a material with high orthotropy ratio.
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